9x^2=4x^2+10

Simple and best practice solution for 9x^2=4x^2+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2=4x^2+10 equation:



9x^2=4x^2+10
We move all terms to the left:
9x^2-(4x^2+10)=0
We get rid of parentheses
9x^2-4x^2-10=0
We add all the numbers together, and all the variables
5x^2-10=0
a = 5; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·5·(-10)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*5}=\frac{0-10\sqrt{2}}{10} =-\frac{10\sqrt{2}}{10} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*5}=\frac{0+10\sqrt{2}}{10} =\frac{10\sqrt{2}}{10} =\sqrt{2} $

See similar equations:

| 6(a+3)=5a+1 | | 32.5}25={97.5{z | | 5x^2–40=100 | | ⁻4+5x=11 | | 10x-24=5x+28 | | 3(2x-4)+5x=4(x+7) | | 6(4f-3)=15f | | C+3+d-8+d=55 | | 2.4=0.6t | | 10x-2+3(x-1)=2(x-1)+5(5+x) | | 7(s+4)=6s+18 | | 10+5x=4x-7 | | 7+5(x-3)=33 | | 3x^2–6=34–2x^2 | | 36-0.12x=12-0.6x | | 8y+36+14y+24=150 | | -8(-2d+15)=-14+16d+1 | | 13+3x-25=6 | | x^2–25=25 | | -21x-28=-7(3x+4) | | 4(m+5)=3m+8 | | (w)=8 | | =6x+2x+1+4 | | 1.75=0.25n | | -21x-28=-7(3x+4 | | -10v+8+5=15-10v | | 6(a+3)=5a+4 | | q−5.7=8.26 | | 7x+4=12x+2 | | -15b=4+3(-5b-19) | | 9x+7+2x=14 | | -2(3p+6)=6(4+p) |

Equations solver categories